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ABSTRACT

As a cancer stem cell marker, CD44 variant 6 (CD44v6) has been implicated in 
carcinogenesis, tumor progression, and metastasis in a variety of human carcinomas. 
However, little is known about the expression of CD44v6 in Gastric Carcinoma (GC). 
Therefore we investigated CD44v6 expression in clinical specimen and further explore 
the underlying molecular mechanisms.

In this study, we systemically investigated CD44v6 expression by 
immunohistochemistry in normal, premalignant gastric mucosa (low and high grade 
intraepithelial neoplasia), and GC at various stages. The correlation of CD44v6 
expression with clinicopathological characteristics, and prognosis in GC was also 
analyzed. Next, we investigated cell proliferation, migration and invasion in GC cell 
lines. Furthermore, we explored a novel mechanism by which CD44V6 was upregulated 
in GC cell.

The immunohistochemistry results showed that enhanced expression of CD44v6 
was closely associated with tumor differentiation, lymph node metastasis, TNM stage 
and poor prognosis in GC patients. In gastric cancer cell lines, CD44v6 involved in 
cell proliferation, invasion and metastasis in Next, report on a novel mechanism by 
which interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) 
signaling up-regulates expression of CD44v6. RNA interference silencing of STAT3 
resulted in decrease of CD44v6 levels. We also found that STAT3 inhibitor AG490 
decrease expression of CD44v6 by blocking activation of STAT3, even in the presence 
of IL-6. Targeting STAT3-mediated CD44v6 up-regulation may represent a novel, 
effective treatment by eradicating the stomach tumor microenvironment.
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INTRODUCTION

Gastric carcinoma (GC) is the fourth most common 
malignancy and the third leading cause of cancer-related 
death world-wide [1, 2]. In spite of recent progress in the 
surgical treatment and chemotherapy, the prognosis of GC 
patients remains poor [3]. Tumor recurrence including 
metastasis is the main cause of cancer-related death. 
Unfortunately, tumor recurrence after radical gastrectomy 
with curative intent is relatively common, occurring 
in 20% to 50% of GC patients [4, 5]. At present, the 
underlying molecular mechanisms responsible for tumor 
recurrence have not been fully elucidated. The specific 
tumor markers in detection of tumor recurrence stay 
elusive. Over the past decades, several cancer stem cells 
(CSCs) have been identified and characterized in various 
types of human cancers [6–9]. Because CSCs possess the 
ability to initiate tumorigenesis, promote progression, 
and resist conventional chemotherapies [8, 10, 11], the 
concept that CSCs are responsible for tumor initiation is 
quite well established. However, the role of CSCs in tumor 
recurrence remains poorly understood, especially in GC 
[12, 13].

The cell adhesion molecule, CD44, is a trans-
membrane glycoprotein that binds hyaluronic acid, 
facilitates tumor invasion, and promote tumor recurrence 
[14–16]. A growing body of evidence suggests that CD44 
is also a major cell surface marker of CSCs in several solid 
tumors, including GC [9, 12, 15–18]. Previous molecular 
studies show that CD44 is expressed as a standard form 
(CD44s) and also in numerous variants (CD44v) generated 
by alternative mRNA splicing [14, 17, 19]. Among CD44 
variants, CD44 variant 6 (CD44v6) has been implicated 
in carcinogenesis, tumor progression, and recurrence in a 
variety of human cancers [20–25], identified recently as 
the marker of CSCs in brain tumors, colorectal and bladder 
carcinomas [21, 26, 27]. Overexpression of CD44v6 found 
to be an indicator of poor prognosis in hepatocellular 
carcinoma [28] and GC [29].

Despite the immense clinical importance, molecular 
mechanisms underlying expression of CD44v6 in GC are 
unknown. In GC and several other human malignancies 
in the liver, breast, head and neck, and hematogenetic 
organs, aberrant activation of signal transducer and 
activator of transcription 3 (STAT3) has been discovered 
[30, 31]. STAT3 is critical in inflammation-associated 
tumorigenesis by regulating numerous oncogenic and 
inflammatory genes [32], such as interleukin-6 (IL-
6), a potent STAT3 activator, and highly expressed 
in response to hepatitis viral infection and systemic 
inflammation in the liver [33]. The IL-6/STAT3-signaling 
pathway has been previously reported to be involved in 
hepatic inflammation/regeneration, but unknown in GC, 
in which inflammation is one of the most prominent 
clinicopathologic characteristics. In this study, we 
hypothesized that CD44v6 played an important role in GC 

proliferation, invasion, and migration, and CD44v6 was 
upregulated via the IL6/STAT3-medicated pathway.

RESULTS

The expression of CD44v6 and pSTAT3 in 
gastric benign mucosa, premalignant lesion, and 
carcinoma

By immunohistochemistry, CD44v6 is mainly 
membranous and p-STAT3 is mainly nuclear. The 
expression of CD44v6 was significantly progressively 
increased from minimal immunoreactivity in normal 
mucosa (0.82±1.006, mean± standard deviation) 
to moderate in premalignant lesion (2.68±1.887), 
early GC (2.48±2.129) and marked in advanced GC 
(4.56±2.912) (p<0.01). A similar immunoreactivity 
pattern was found with pSTAT3 immunostaining (0.00±0, 
0.59±0.805, 0.87±1.254, 0.74±1.209, respectively)
(p<0.05). Expression of CD44v6 and pSTAT3 were 
significantly elevated in different stages of GC, as shown 
in Figure 1A, B and Supplementary Table 1. The results 
of Western blotting in 8 paired advanced GC tumors 
and corresponding adjacent normal tissues confirmed 
significantly increased immunoreactivity of CD44v6 and 
pSTAT3 in advanced GC tissues, compared to normal 
tissue controls (Figure 1C).

Correlation with clinicopathological 
characteristics and prognosis

As shown in Table 1, CD44v6 expression in 103 GC 
tumors was associated with differentiation grade, depth 
of invasion, nodal metastasis, and TNM stage (p<0.005). 
However, there was no significant correlation between 
CD44v6 expression and other pathological parameters, 
such as patient age, gender, or tumor size. By the Kaplan–
Meier method for post-resection survival analysis. GC 
patients with low expression of CD44v6 had a significantly 
better outcome than those with high expression of CD44v6 
(P<0.05; Figure 2A). However, expression of pSTAT3 
showed neither significant correlation with clinicopathology 
(Supplementary Table S2) nor prognosis (Figure 2B).

Proliferate roles of CD44v6 in gastric cancer cell 
line

By Western blotting, protein expression of CD44v6 
in four GC cell lines was compared with one normal gastric 
epithelial cell line, GES-1. As exhibited in Supplementary 
Figure 1, CD44v6 protein expression was significantly 
higher in 3 GC cell lines, compared to that in control. 
However, CD44v6 expression was not significantly 
increased in the N87 GC cell line (Supplementary Figure 1). 
This inconsistency may be due to the different genetic 
background of cell lines (Supplementary Table 3).
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In order to investigate the functional roles of 
CD44v6 in GC, we first created two HGC-27 cell lines 
pre-transfected with CD44v6-siRNA (si#1,si#2) and 
negative control-siRNA (nc) (Figure 3A). Next, we 

compared the proliferation of these two cell lines using 
CCK-8 assay. The growth of cells of decreased CD44v6 
is slower than negative-control cells, suggesting CD44v6 
is capable of stimulating cell proliferation (Figure 3B). 

Figure 1: (A) Immunostaining and (B) analysis of the results of CD44v6, and pSTAT3 expression in Normal, precancerous lesions (PGC), 
early gastric cancer (EGC) and advanced gastric cancer (AGC) tissues (*P<0.05, **P<0.01, ****P<0.005); (C) Western blot analysis 
of CD44v6 and pSTAT3 expression in 8 paired advanced gastric carcinoma tumors (T1, T2, T3, T4, T5, T6, T7, T8) and corresponding 
adjacent normal gastric mucosal tissues (N1, N2, N3, N4, N5, N6, N7, N8).
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Similar results were observed in colony formation assays 
as CD44v6-downregulating cells displayed a lower 
colony-forming ability (Figure 3C).

Effect of CD44v6 on expression of epithelial-
mesenchymal transition molecules, gastric 
carcinoma cell migration and invasion in vitro

In the GC cell line (HCG-27) after knockdown of 
CD44v6 with siRNA, decreased expression of CD44v6 
was accompanied by downregulation of key epithelial-
mesenchumal transition inducers, snail and zeb1, and 
by upregulation of E-cadherin (Figure 4A). Further 

investigation in HGC-27 (Figure 4B) and AGS (Figure 4C) 
cell lines demonstrated significant inhibition of the GC 
cell migration and invasion capability.

CD44v6 expression by activation of the IL-6/
STAT3 signaling pathway

GC is known to be associated with chronic 
inflammation, in which IL-6-activated STAT3 expression 
is an important signaling pathway. To investigate whether 
pSTAT3 involves in activation of CD44v6 expression, 
we used the GC cell lines, HGC-27 and AGS with 
endogenously overexpressed CD44v6, to test if siRNA-

Figure 2: (A) The Kaplan-Meier survival analysis showed significantly poor prognosis in GC patients with high expression of CD44v6,
compared to those with low-expression (P<0.05); (B) in contrast, there was no significant survival differences between GC patients with 
high or low expression of pSTAT3 (P>0.05), on the basis of immunohistochemistry results.
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mediated knockdown of STAT3 affected CD44v6 
expression. As shown in Figure 4, a significantly decreased 
expression of CD44v6 after STAT3 knockdown was 
indeed observed (Figure 5A, 5B). Furthermore, functional 
inactivation of STAT3 by pan-JAK inhibitor AG-490 
decreased the expression of CD44v6 (Figure 5C, 5D).

Next, we tested whether IL-6 treatment could 
modulate CD44v6 expression. As shown in Figure 6, IL-6 
treatment resulted in not only high expression of CD44v6 
but also pSTAT3 in both HGC-27 (Figure 6A) and AGS 
(Figure 6B) cells. The activation of STAT3 expression by 
IL-6 stimulation was also confirmed by Western blot in 
both HGC-27 (Figure 6A) and AGS cells (Figure 6B). 
Furthermore, a combination treatment with AG490 and 
IL-6 significantly reduced CD44v6 expression in HGC-
27 cells (Figure 6C) but not in AGS cells (Figure 6D), 
suggesting that pSTAT3 is necessary for IL-6-induced 
CD44v6 expression in some gastric cancer cells. The 
difference of AGS and HGC-27 cells may be due to the 
different sensitivity to AG490 and IL-6. These results 
strongly imply that proinflammatory signaling can 

facilitate GC tumorigenesis through the IL-6/STAT3-
mediated CD44v6 up-regulation.

DISCUSSION

It is well established that the tumor CSC surface 
marker, CD44v6, is causally involved in cancer metastasis 
[29], correlated with tumorigenesis in some cancer types. 
For example, Mikami et al. reported that CD44v6 was 
overexpressed in extrahepatic bile duct carcinomas and 
linked to carcinoma differentiation [34]. In GC, Xin et 
al. first discovered that CD44v6-high expression was 
associated with poor survival in patients with advanced 
GC [35]. In 2014, two meta-analysis studies confirmed 
the association between high CD44v6 expression and 
worse overall post-resection survival in GC patients [36]. 
However, most studies have concentrated on advanced 
carcinomas, including GC. Studies focused on different 
stages of GC and functions of CSC marker, including 
CD44v6 and the molecular signaling pathways in tumor 
microenvironment are lacking.

Table 1: The relationship between expression of CD44v6 and clinicopathological features in GC

Parameters N CD44v6 χ2-value P value

Low(%) High(%)

Gender

  Male 69 40(58.0) 29(42.0) 0.007 0.934

  Female 34 20(58.8) 14(41.2)

Age

  <60 48 25(52.1) 23(47.9) 1.407 0.236

  ≥60 55 35(63.6) 20(36.4)

Size

  <6.0(cm) 80 50(62.5) 30(37.5) 2.658 0.103

  ≥6.0(cm) 23 10(43.5) 13(56.5)

Differentiation

  Poor 49 21(42.9) 28(57.1) 9.109 0.003*

  Well/moderate 54 39(72.2) 15(27.8)

Depth of invasion

  T1/T2 41 32(78.0) 9(22.0) 10.976 0.001*

  T3/T4 62 28(45.2) 34(54.8)

Lymph node status

  No 42 32(76.2) 10(23.8) 9.383 0.002*

  Yes 61 28(45.9) 33(54.1)

TNM stage

  I/II 51 37(72.5) 14(27.5) 8.490 0.004*

  III/IV 52 23(44.2) 29(55.8)
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In the present study, we studied the expression of 
CD44v6 and pSTAT3 in normal tissues, precancerous 
lesions, the early and advanced GC and discovered the 
progressive involvement of CD44v6 in GC tumorigenesis. 
The differences in CD44v6 expression between normal 

tissues, precancerous lesions, and advanced GC are 
statistically significant. In contrast, expression of pSTAT3 
is significantly increased only in early and advanced 
GC tissue, compared to normal controls, as confirmed 
with both immunohistochemistry and Western blotting. 

Figure 3: Investigation of the oncogenic functions of CD44v6. HGC-27 cells were transfected with negative-contronl siRNA and 
CD44v6-siRNA for 3 days. (A) The expression of CD44v6 and β-actin was detected by Western blot. (B) Proliferation of HGC-27 was 
examined using CCK8 assay. Cell viability was calculated by the following formula: relative cell viability = (absorbance450nm of treated 
group − absorbance450nm of blank)/(absorbance450nm of control group − absorbance450nm of blank). (C) Colony-forming ability of 
HGC-27 cell was investigated by colony formation assay (*P <0.05).
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Figure 4: After knockdown of CD44v6 expression with siRNA (si#1,si#2) in the gastric cancer cell line, HGC-27, AGS. 
(A) In HGC-27 cells, expression of epithelial-mesenchymal transition molecules, ZEB1 and Snail was markedly reduced, but E-cadherin 
expression increased. The right lane Further cell migration and invasion assays demonstrated conspicuous inhibition of (B) HGC-27 
and (C) AGS cells after knockdown of CD44v6, compared to cells transfected with negative-si RNA NC was used as 1 for fold change 
calculation (*P <0.05, ** P <0.01). The lower panel was the quantitative comparison. NC was used as 1 for fold change calculation. (*P 
<0.05, ** P <0.01)
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Figure 5: Western blot analysis of CD44v6 expression that was regulated by activation of STAT3 signaling. (A) HGC-
27 and (B) AGS cells were treated with STAT3 siRNA (si#1, si#2, si#3) for 3 days to knockdown STAT3 expression. As a result, CD44v6 
expression was markedly reduced, compared to normal control cells (nc). In (C) HGC-27 and (D) AGS cells pretreated with AG490 to 
inactivate pan-JAK signaling to disable STAT3 for 12 hours, expression of CD44v6 was decreased (*P<0.05, ** P <0.01).
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Figure 6: Western blot analysis of IL-6 induced CD44v6 expression through activation of STAT3 signaling. (A) HGC-
27 and (B) AGS cells were cultured in serum-free media for 6 hours. Then, cells were incubated with IL-6 for 6 hours, and expression of 
CD44v6 and p-STAT3 was dose-dependently increased. Pretreatment with AG490 (50μM) for 12 hours in (C) HGC-27 and (D) AGS cells 
to inactivate STAT3, next cultured in serum-free media for 6 hours and then incubation with IL-6 (50ng/ml) in a serum-free condition for 
6 hours markedly reduced expression of CD44v6 (*P <0.05, ** P <0.01).
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The CD44v6 expression in normal mucosa was very low, 
but in premalignant lesions (including low and high grade 
intraepithelial neoplasia), the expression of CD44v6 was 
increased. Probably due to the premalignant lesions had 
many similar phenotype with the early GC, the CD44v6 
expression was not significantly different between the two 
groups. However, the CD44v6 expression in advanced GC 
sharply elevated. This also showed the CD44v6 played a 
great role on the tumor progression. Importantly, CD44v6 
expression is significantly predictive for poor prognosis in 
GC patients and correlated with poor tumor differentiation, 
deeper invasion, nodal metastasis, and advanced TNM 
stage. The findings of this study are compatible with the 
property of CD44v6 being an important prognosis marker 
in GC [29].

Despite the significant relevance of enhanced 
expression of CD44v6 to GC progression, little is known 
about the mechanisms of how it exerts its oncogenic 
function in GC. Herein, we investigated the functional 
roles of CD44v6 in GC cell proliferation, colony-forming 
ability, migration and invasion. The results are consistent 
with other two studies [29, 37], except for that CD44v6 
did not activate cell migration in the scratch wound-
healing assays [29]. The reason for this discrepancy maybe 
differences in background of GC cell lines and further 
studies will be needed to elucidate this question. That how 
CD44v6 involve in the cell proliferation, invasion and 
migration in GC also need further research.

Despite the studies on the CD44v6 expression, 
fundamental mechanisms underlying deregulating of 
CD44v6 are not known. The improved understanding of 
molecular pathway by which CD44v6 is deregulated in GC 
will provide useful information for elucidation of stomach 
CSC origin and development of novel treatment strategies 
against the deadly disease. IL-6 and its downstream 
molecules, such as STAT3, play an essential role in 
inflammation, aberrant immunity, and also carcinogenesis 
in some carcinomas [38–40]. IL-6 has been shown to 
enhance invasion of GC cells through sustained activation 
of STAT3 [31, 41, 42]. IL-6/STAT3-mediated CSC marker, 
CD133 up-regulation contributes to promotion of liver 
carcinoma [43]. Herein, we provide additional critical 
evidence on how IL-6/STAT3 signaling promotes GC 
invasion by inducing CD44v6 expression. In this study, a 
significantly decreased expression of CD44v6 after STAT3 
knockdown was observed and functional inactivation of 
STAT3 by the pan-JAK inhibitor, AG-490, decreased the 
expression level of CD44v6 in both HGC-27 and AGS 
GC cells in vitro. The results suggest that IL-6 is able to 
activate expression CD44v6 and STAT3. On the other 
hand, obviously decreased CD44v6 expression in AG490-
treated GC cells in vitro even with the concurrent IL-6 
treatment suggests that activation of STAT3 is necessary 
for IL-6-induced CD44v6 expression. Therefore, our study 
results demonstrate that IL-6 is critical for induction of 
CD44v6 expression by STAT3 activation. IL-6 is also 

elevated in lots of cancers and is a potential regulator of 
stem cell renewal and proliferation [44–46]. However, the 
mechanism by which IL-6 regulates CD44v6 expression 
through STAT3 requires more detailed studies.

Taken together, our study results showed that 
CD44v6 is an important regulator of GC tumorigenesis, 
angiogenesis, and survival in an IL-6 mediated, pSTAT3-
dependent manner; pSTAT3-mediated CD44v6 up-
regulation may represent a promising target molecular 
signaling pathway for systemic therapy of human GC.

MATERIALS AND METHODS

Patients and tissue samples

One hundrend sixty six patients treated at the 
Nanjing Drum Tower Hospital in the Jiangsu Province, 
China, were enrolled over the period from Jan 2006 to 
Dec 2013, including 80 with GC, 23 with early GC staged 
at pT1, 41 with premalignant lesions (low and high grade 
intraepithelial neoplasia) in the gastric mucosa, and 22 
normal controls. Patients without enough tissue sample 
or necessary clinicopathological information, or loss 
to follow-up were excluded from the study. The paired 
formalin-fixed paraffin-embedded tissue blocks were 
retrieved and recut for immunohistochemistry. Proteins 
were extracted with the conventional methods in fresh 
frozen matched tumor and non-tumor tissues stored in the 
Biobank at this hospital. The study protocol was approved 
by the Medical Ethics Committee of the Nanjing Drum 
Tower Hospital.

Immunohistochemistry

Immunohistochemical (IHC) analysis for CD44v6, 
and p-STAT3 expression was performed on formalin-fixed, 
paraffin-embedded sections of surgical specimens. Briefly, 
sections were deparaffinized in xylene and rehydrated 
in gradient ethanol solutions up to distilled water. 
Endogenous peroxidase activity was blocked by 0.3% 
H2O2 in methanol for 20 min. The slides were immersed 
in 10mM citric buffer (pH 6.0) with heating for 15 min for 
antigen retrieval. Nonspecific binding sites were blocked 
with 10% normal goat serum for 10 min. Then, sections 
were incubated in a humidified chamber overnight with 
CD44v6 and p-STAT3 antibody. Immunostaining was 
visualized with Diaminobenzidine (DAB) and hematoxylin 
counterstain. The scoring for CD44v6 and p-STAT3 
(expressed at a high level) was based on the area intensity 
score method (AIS) as previously descibed [49].The 
protein expression was scored independently according 
to the intensity of cellular staining and the proportion of 
stained tumor cells. The staining intensity was scored as 0 
(no staining), 1 (weak staining, light brown), 2 (moderate 
staining, yellow brown) and 3 (strong staining, brown). 
The proportions of stained tumor cells were graded as 0 
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(≤5 % positive cells), 1 (6–25 % positive cells), 2 (26–50 
% positive cells) and 3 (≥51 % positive cells). The total 
scores for intensity and proportion were used to represent 
the level of protein expression. Positive controls consisted 
of each staining run and consisted of GCs known to 
express each of the antigens. Negative controls were 
normal mouse serum instead of the primary antibody.

Reagents, siRNAs, and antibodies

Anti-CD44v6 (clone: ab78960) and anti-Snail 
(clone: ab82846) antibodies were purchased from Abcam 
(Cambridge, UK). Anti-phospho-(Tyr705)-STAT3 
(p-STAT3) (clone: 4113; clone: 9131), E-cadherin(clone: 
3195s) and ZEB1(clone:3396) antibodies were purchased 
from Cell Signaling Technology (Beverly, MA, USA). 
Anti-β-actin (clone: A5441) antibody was from Sigma-
Aldrich (St Luis, MO, USA). AG490 were purchased from 
Selleck Chemicals (Houston, TX, USA). SiRNAs target 
STAT3 was purchased from Invitrogen (Carlsbad, CA, 
USA), and CD44v6 as well as a negative control siRNA 
(sequences are detailed in Supplementary Table 4) were 
purchased from (RiboBio, GuangZhou, China).

Cell culture and transfection

The human gastric cancer cell lines, AGS and 
HGC-27, were purchased from the Cell Bank of Chinese 
Academy of Sciences, and were authenticated by China 
Center for Type Culture Collection (CCTCC) (Shanghai, 
China). All cell lines were cultured in Roswell Park 
Memorial Institute (RPMI)-1640 medium supplemented 
with 10% fetal calf serum (FBS) in a humidified incubator 
at 37 °C with 5% CO2. Transfection was carried out using 
Lipofectamine RNAiMax Reagent (Invitrogen, California, 
USA) as described elsewhere (reverse transfection method) 
[47]. In brief, 50 pmol siRNA and 0.5 ml Opti-MEM I 
Medium (Invitrogen) without serum was mixed in each 
well of the six-well plate. Then 7.5 μl of Lipofectamine 
RNAiMAX reagent was added and gently mixed. After 
incubation for 20min at room temperature, 2ml of cell 
suspension including 3×105 cells in complete growth 
medium without antibiotics was added into each well. This 
generated a final siRNA concentration of 20 nM.

Western blot analysis

The total protein were extracted from target tissues 
and cells prepared with ice-cold lysis buffer (Biosharp). 
The supernatant was used for Western blot analysis. Protein 
concentrations were determined using a BCA protein kit 
(Beyotime Institute of Biotechnology, China). Samples 
containing equal amounts of protein were mixed with 
loading buffer containing 5% 2-mercaptoethanol and then 
heated for 10 min at 95 °C. Twenty to forty micrograms of 
protein lysates were separated on 8–12 % sodium dodecyl 
sulfate-polyacrylamide gels and then transferred to the 

NC (Nitrocellulose) membranes (Millipore, Bedford, 
MA, USA). Tris Buffered Saline, with Tween-20 (TBST) 
containing with 5% nonfat milk or bovine serum albumin 
was used to block nonspecific binding for 2h at room 
temperature. Then, the membranes were incubated with 
the primary antibodies. Subsequently, the membranes 
were rinsed three times with Tris Buffered Saline (TBS) 
and 0.1% Tween-20 (TBS-T) for 10min and re-incubated 
for 1h at room temperature in blocking buffer with each 
Horseradish Peroxidase (HRP)-conjugated secondary 
antibody (1:5000), then washed three times for 10min 
each. Signals generated by enhanced chemiluminescence 
(Millipore) were recorded with a CCD camera (CLINX, 
Shanghai, China). Data are representative of at least three 
independent experiments.

Cell proliferation

Cell viability was detected by Cell Counting Kit 
(CCK-8) assay. Cells pretreated with siRNA for 2 days 
were seeded into 96-well plates at 5 × 103 cells/well 
and then cultured for 24h, 48h, and 72h at 37 °C. After 
treatment for indicated times, 10 μl CCK-8 solutions were 
added to each well of the plate. Plates were incubated at 
37 °C for 1 h, and then the absorbance at 450 nm was 
measured. All experiments were carried out in triplicate 
and repeated three times independently.

Colony formation assays

Colony-formation assay was performed as 
previously described [48]. In brief, the cell lines were 
transfected with CD44v6 siRNA (si#1,si#2), negative 
control-siRNA, for 3 days. Then 1 × 103 cells/well were 
seeded into six-well plates. After 14 days, the colonies 
were fixed with methanol and stained with crystal violet. 
Crystal violet stained colonies were photographed. All 
experiments were done in triplicate and repeated three 
times independently.

Cell migration and invasion analysis

Transfilter migration and invasion assays were 
performed on the HGC-27 and AGS cell lines in serum-
free RPMI with 8.0-μm pore inserts on a 24-well Transwell 
(Corning Costar, Lowell, MA). The HGC-27 cell lines 
were transfected with CD44v6 siRNA, scRNA, for 3 days 
and then transferred to the upper chamber of the Transwell 
coated with 0.5mg/ml collagen type I and Matrigel (BD 
Bioscience, San Jose, CA) at 1:8 dilution. Migrating and 
invading cells were quantified after hematoxylin and eosin 
staining. Migration and invasion assays were performed 
after transfection, as previously described.  

Statistical analysis

All statistical analyses were performed by the 
software “Statistical Package for Social Science” (SPSS) 
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version 22.0 for Windows (SPSS, Chicago, IL, USA) 
and GraphPad Prism software v.6.01. Differences in 
expression of CD44v6, and pSTAT3 among advanced and 
early GC, gastric premalignant lesions, and normal gastric 
mucosal tissues were compared by the one-way analysis 
of variance (ANOVA) test. The associations among 
expression of CD44v6, pSTAT3, and clinicopathological 
characteristics were analyzed using the Students’ t test or 
the Chi-square test, where appropriate. The probability 
of survival was estimated by the Kaplan-Meier method 
with a log-rank test. All P values were two-sided and 
considered statistically significant if less than 0.05.
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